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Abstract. In terms of Noether’s theorem, we propose a systematic approach to attack the 
dynamical symmetry problem. Starting with a polynomial symmetry transformation, we 
can simultaneously determine the transformation functions and the possible potentials, then 
obtain the corresponding conserved quantities and the symmetry algebras. In the isotropic 
case, up to a certain order of transformations, we find that all possible systems which possess 
symmetry larger than a superficial geometrical symmetry fall into five categories: free 
particle, harmonic oscillator, Coulomb potential, centripetal potential and mixed potential. 
The symmetry algebras of these systems are also discussed. 

1. Introduction 

Dynamical symmetry has been discussed for a long time in both classical mechanics and 
quantum mechanics. (For a review, see Mariwalla (1975), McIntosh (1971) and 
references therein.) This concept is particularly useful in quantum mechanics because it 
determines the spacing and the degeneracy of the energy levels, and facilitates the 
calculation of matrix elements and the derivation of the selection rule (Wybourne 1974, 
Englefield 1972). However, there is a systematic way to find such symmetries, so 
traditionally they have been called ‘accidental’ or ‘hidden’ symmetries. Therefore, it is 
useful to develop a general procedure for investigating such dynamical symmetry for an 
arbitrary physical system (Mariwalla 1975). In addition, there is a hope of finding a 
systematic way by which one can determine all possible systems which possess dynami- 
cal symmetry. It is preferable, of course, to solve both aspects of this problem at the 
same time, if possible. 

A usual method of searching for dynamical symmetry is as follows. Firstly, one tries 
to find the constants of the motion of a classical system. Then one calculates the Poisson 
bracket; then, after selecting the proper ordering of the canonical variables as they 
enter in the constants of the motion, one transcribes all expressions into quantum 
mechanics using the quantum bracket instead of the Poisson bracket. Therefore, the 
main task in searching for dynamical symmetry is to discover the constants of the 
motion. 

In dealing with a symmetry and the associated conserved quantity, Noether’s 
theorem (Noether 1918, Gel’fand and Fomin 1963) is a very powerful tool. Although 
some new methods have been developed recently (e.g. Katzin and Levine 1968,1974, 
Wollenberg 1975), in this paper we apply Noether’s theorem to give a systematic way in 
which one can determine the possible systems (potentials) and the corresponding 
dynamical symmetries simultaneously. In § 2, we give a generalised form of Noether’s 
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theorem. In  terms of this theorem we can determine the polynomial symmetry 
transformation and the corresponding constants of the motion. In 0 3 we use this 
generalised Noether theorem to attack the dynamical symmetry problem of the 
three-dimensional isotropic single-particle system. We find that, up to a certain order 
of polynomial transformation, the possible potentials which possess a symmetry larger 
than the superficial geometrical symmetry are the free particle, the harmonic oscillator, 
the Coulomb potential, the centripetal potential and the mixed potential. Then in 0 4 
we give the explicit constants of the motion corresponding to various possible systems 
and discuss briefly the symmetry algebra. Finally, we make a few concluding remarks 
on  our results in ci 5. 

2. Noether’s theorem 

Noether’s theorem has many forms. In 1978, Lutzky presented an expression which is 
very convenient for our purpose. He states Noether’s theorem as follows. 

If the equation of motion of a physical system described by a Lagrangian T(q, 4, t )  is 
invariant under the transformation 

49 r = eAGt, 4, (1) Q = eAE(q.q.C Q = e A G i q . r J  

namely, if the Lagrangian satisfies the equation 

E { Y )  = - iY+ f3 

then we obtain a constant of the motion @, 

Here A is a group parameter, 6 , ~  and f are functions of time and the coordinate. G and 
E are differential operators: 

E=G+(r j -  (4) 

Through direct calculation, one can verify that the total time derivative of @ is zero 
by means of the Euler-Lagrange equation. Besides providing the constant of the 
motion, this expression of the theorem also gives an equation which the symmetry 
transformation and the Lagrangian should satisfy. So it allows us to find the symmetry 
transformation for a given system, or, vice versa, to determine the potential for a known 
symmetry transformation. Fortunately, it can even be used to fix both the symmetry 
and potential at the same time. However, this presentation of the theorem only deals 
with the point transformation; the constant of motion cannot contain a term with 
momentum of power greater than 2. So we should extend the transformation to include 
higher time derivatives of the coordinates (L6vy-Leblond 1971). Anderson et aZ(1974) 
have done something analogous for generalising Lie’s counting theorem. Of course, 
since the equation of motion (which is a second-order differential equation) is imposed, 
it is sufficient that the transformations contain the first-order derivative of coordinates 
only. In addition, when the coordinate transformations contain derivatives, the time 
transformation need not be taken into account because the corresponding constants of 
the motion can be obtained by appropriately choosing the coordinate transformations. 
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Now we state Noether’s theorem in three-dimensional space. 

If the equation of motion of a multiparticle system described by Lagrangian 2 ( r f ,  19, t )  
is invariant under the infinitesimal transformation 

SrP = qlP(rP, i f , t ) ,  ( 5 )  

v 9 a Z / a r f  + + f a z / a i f  = -f, (6) 

i.e. the Lagrangian satisfies the equation 

then a constant of the motion is given by 

cp = v ;aLf /a i :  + f. 
Here f is an arbitrary function of time and coordinates only. 

(7) 

Applying this theorem to a single-particle isotropic system, we have the following 
equations: 

3 = Si: - V ( r ) ,  

Sri = v i ( r i ,  ii, t ) ,  

-via v / a r i  + +iti +f = 0, 

cp = Viii + f = qipi + f. 

(8 )  

(9) 

(10) 

(11) 

3. Potentials and symmetry transformations 

To solve equation (10) we need to impose a restriction on the transformation function 
vi. Generally, we can expand the vi in a power series of velocity ti (momentum) and the 
coordinates 

Corresponding to this polynomial symmetry transformation, we obtain a polynomial 
constant of the motion 

This provides a systematic way to search for algebraic constants of the motion. 
Expansion (12) can be slightly simplified by considering the vector property of vi. 

As an example, we truncate the expansion to a certain order; we also suppose that 
the leading term of vi is a bilinear function of velocities and coordinates. Then we can 
express v i  in the following way: 

vi = e&r&ii + p&i&ri + r/$&ui + eiiii + (14) 

Here, e&, Pk, g& and the symmetric tensor eii (the antisymmetric tensor does not lead to 
the constant of the motion) are functions of time only, and li is a function of time and 
coordinates. 
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From equations i 14) and (20). using the equation of motion 

1; = - ( r , / r )  C" (15) 

and considering that i., is an independent variable, we obtain the following equations: 

(16) 

(17) 

(18) 

(19) 

( & + pk 7 gk ) r k i 2  = 0. 

f j k r k f 2  c b k i k r . f r  + k l i l r k i k  i l,fl;, + [ f , ~ i l i l  = 0 ,  

- ( 2 @ k  + T A  + p k  ) r k r r i . ,  V ' l r  - (CT, -+- pI ) r  V'i, - (ti, + tlf brit V' / r  + f;,of, + f,k = 0, 

-Clr V ' / r  + f o  = 0 

Here we have used the notations 

d V  
dr ' 

\J' ~ 

a f  f ' ,  = -- 
;if 

31 d r, 
f -- 
,I]-  3 !20) 

From equation (1 6) we have 

H k + p k + V i = = 0  (21) 

(22) G I , ,  = z(e,r,  + klr, ) - k k r k & r l  - &, + D I F i f l .  

Then putting 121! back into equation (17), we obtain 
c 1 '  

Symmetry under interchange of the order of differentiation imposes 

<i ik { I  i, (23) 

which results in 

# L  \ ) .  Di,, = 0.  (24) 

Then we have 

i, = - i$rz - Diel,lr, + ( t  ) .  ( 2 5 )  

Feeding ( 2 1 )  and ( 2 5 )  back into equations (18) and (19), and using the condition 

f I ,  = f ,I. (26) 

we produce some constraints on DI,  Of, and ell* 
( a )  DLq=OO, (27 )  

V"+ ( 2 / r )  V' = 0. 
otherwise. 

'This means that only for the Coulomb potential 

V - n  ; / r  (29) 

or the free particle case could Oi be non-zero. We divide the tensor tij into its trace part 
and its traceless part 

1 L )  ZtI =.- @,, + g;, 6: = 0. 

'Then condition (26) also yields 

V - r V "  = 0, 
otherwise, 
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i.e. only when the potential is the harmonic oscillator 
2 V = azr 

or free particle is the traceless part of eij non-vanishing. 
In parallel with condition (26), there is another condition 

f , io =f.oi 

which results in an analogous equation: 

(34) 
1 
r r 

- (? - [?- V' - &(- V' + rv'f) = 0. 

rP $0, V = a 2 r ,  +2a2[P = 0, (35) 

4#0, v = a2r + a-2r-2, $+8a24 =0, (36) 

(37) 

I 1  

This equation implies that 
2 

2 

2 "D 
e i j  + 8 ~ 2 4 ;  = 0. e; f 0, V = a 2 r ,  

In all other cases, 57, 4 and 
From the above we can see that the polynomial symmetry transformation leads to a 

series of conditions which make it possible to determine the symmetry transformation 
and the allowed potential simultaneously. 

Now we collect and summarise the above results. If the leading-order term of 
transformation is a bilinear function of ri, ii, then this transformation should be of the 
form 

vi = 8krkti 

are all zero. 

+ pkikri  - pirkik + - &ri 4- ( ; i j  - 4: rj i- Dlqijrj f [ y  (38) 

and the function f can be integrated out as 

f = - Oiri v + +ir2 + 2 5 ~  + ig ri rj + &ri v ,~  - [Prp (39) 

Here & and Dl are constant vectors, and Pk is arbitrary, but we can ignore it because it 
does not lead to any constant of the motion. &, .$, 6: and [? depend on the potentials. 
There are altogether six cases. We list them as follows. 

(1) Arbitrary isotropic potential. 

V(r) = arbitrary, (40) 

6; = 0, 6 k  = 0, [P = 0, & = O *  (41) 

(2) Free particle. 

V(r) = 0, (42) 

(43) 0i # 0, 8; 0, 1'=0, [i =o. 

(44) 

"0 

(3) Isotropic harmonic oscillator. 
2 V = a 2 r ,  

0i = 0, g:. + 8~24; = 0, T+ 8a2& = 0, + 2a2tP = 0. (45) 
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14)  ('oulomb potential. 

V ( r i  = CI- l / r ,  

4 f 0 ,  l: = 0, 6: = 0, & = O .  

( 5 )  Centripetal potential. 

V i r )  = c( - J r 2 ,  
6? =- 0, 6; = 0, t: = 0,  gk 0. 

V ( r I = r r 2 r 7 + n  Jr '  

0, -= 0, 6: = 0 ,  [l' =o, $+sa,& = 0. 

( 6 )  Mixed potential. 

(46) 

(47) 

4. Constants of the motion and symmetry algebras 

In this section, we give the explicit transformation solutions for various potentials, 
present the corresponding constants of the motion and discuss the associated algebras. 

j 1 i Arbitrary isotropic potential. 

V ( r )  = arbitrary, 77, = 5ft + DrFiijrj, f = 26V. ( 5 2 )  

< and Di are constants. The transformations are the dilatation and rotation. The 
corresponding constants of the motion are the energy and the angular momentum: 

I., = F , i k r , p i .  (53) H = I  2 
2p r/, 

This is just a trivial case. We see that the Hamiltonian is a conserved quantity 
corresponding to the dilatation transformation rather than the time transhtion (LCvy- 
Leblond 1971, Mariwalla 1975). The angular momentum operators Li generate the 
invariance group SO(3). 

12) Free particle 

c' = 0, 

(54) 2 1 2  v i  = H k r k i ,  - - elr& + A ,; ( z t  f ,  frj ) + A : ;( t i  - r, ) -+ A E f j  + B t + B + Dl&lij rj, 

4' = ,4?.r r8 -- I,. I ,  : 

Here Hk. A,, A;j, A:., BI, By and Di are constants. We obtain the following constants of 
the motion corresponding to these transformations: 
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a$= t(pipj -$H&j)-(Dij-$D&j) 

=$(aibj +ajbi + bpi + biaj) -&(arb1 + brat)& 

= pipj - sH&j = bibj - fbrb&j, 2 

(Di - 
7 - Li = EilmrrPm = -&iima&m, 

ai - - tpi - ri = ai, 
= p .  = b. 

I I .  

Here, we have divided the tensor constant of the motion into its trace part and its 
traceless part. The Dij and D are defined as 

oij = $(ripj + ripi +piri +piri), D = D~~ = &ripi +piri). (56) 

From these constants of the motion, it is not difficult to calculate the algebra they close 
into, using the canonical commutation relation [Ti, p i ]  = isij or [ai ,  b j ]  = -isii. The ab, 
a;, and all commute with the Hamiltonian. is the Runge-Lentz vector in this 
case. The Hamiltonian a3 with (Dl and (D2 form an SO(2, l )  algebra. Since (Ds is not a 
compact generator, there are no discrete energy levels (Wybourne 1974). 

(3) Isotropic harmonic oscillator. (Take positive a2 as an example.) 

(57) 

(58)  

2 1 2 2  V(r) = a2r =zw r , 
vi = Aij[cos(2wt)ij + 2w sin(2wt)rj] +Aij[sin(2wt)ij - 2 0  cos(2wf)rj] 

+ A;ij + DIEIijrj + C! cos wt + Ci’ sin ut, 

f = Aij(-w2) cos(2wt)rirj +Aij(-02) sin(2wt)rirj +A:a2rirj 

= pi  sin wt - w cos(wt)ri = czi. 
To display the SU(3) symmetry, we define the following appropriate linear 

(60) 

combinations: 
-1/2 i d  ci = (2w)-l/’(cli + i ~ 2 ~ )  = (20) e ( p i  -iwri), 

cT = (2w)-1’2(cli -iczi) = (2w)-”* e-iwr(pi +iwri). 
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Then the canonical quantisation condition leads to 

[Ci, c ; ]  = s.. 11. (61) 
In terms of ci, c t ,  the above constraints of motion can be rewritten in the form 

Q, -1 t t  
1 - 2 0  (CiCi  + c i  c j ), 

It is obvious that the ci and c ;  are the annihilation and creation operators 
respectively. The symmetric part Q,; and the antisymmetric part (0: of a traceless tensor 
operator which is commutative with the Hamiltonian form the invariance group of 
SU(3) (Wybourne 1974), while the Q1, Q2 and the Hamiltonian close in SO(2,l)  with H 
being the compact generator. In contrast to the conventional situation (Baker 1956, 
Goshen and Lipkin 1959, Katzin 1973, Wybourne 1974), here the creation and 
annihilation operators are also the conserved quantities. 

(4) Coulomb potential. 

V = a-Jr ,  (63) 

The transformation characterised by a vector parameter 4 is Sr = r x ( r  X 0) ;  r changes 
in the direction perpendicular to itself, so it is a sort of rotating transformation. 
Corresponding to (64), we have the following constants of the motion: 

Obviously, Q,: is nothing but the Runge-Lentz vector (Runge 1919, Lentz 1924) 
which, together with the angular momentum vector, generates the invariance group 
SO(4) of the hydrogen atom (Fock 1935, Bargman 1936). Unlike some authors (Katzin 
1973, Fradkin 1967, Prince and Eliezer 1981), we obtain this vector from Noether's 
theorem directly. 

( 5 )  Centripetal potential (Jackiw 1972). 

(66) 2 V = a - z / r  , 
vi =A2(;t2fi -tri)+A1(tii -ri)+A&, 

f = $A2r2 + (A?? + 2Alt + 2Ao)a-2/r2. 
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We obtain the following constants of the motion: 

The invariance group is the geometrical rotation group SO(3) .  Ql, Q2 and Q3 form a 
non-invariance group SO(2, l ) ,  but the Hamiltonian is not the compact generator. 
Therefore, the symmetry group of the centripetal potential is S O ( 2 , l )  x SO(3)  - 
S O ( 3 , l ) .  

( 6 )  Mixed potential. 

(69 )  2 2 1 2 2  2 V ( r )  = a2r + ~ - ~ / r  = zw r + ~ - ~ / r  , 
vi = Al(ii  cos 2wt + 2wri sin 2 w t )  +A2(ii sin 2wt -2wri cos 2wt)  +A& +Dmjjrj, 

f = A 1 ( - w 2 r 2 + 2 a - 2 / r 2 )  cos 2wt+A2(-w r +a -2 / r2 )  sin 2wt+Ao(wrZ+2a-2 / r2 ) .  

Following these transformations, we obtain the conserved quantities: 

Ql = ( H  - w2r2)  cos 2wt +OD sin 2wt, 

2 2  (70) 

02 = (H - w2r2)  sin 2wt - WD cos 2wt, 

The symmetry is the same as in case ( 5 ) ,  but here the Hamiltonian is the compact 
generator of S O ( 2 , l )  (Zhu Dongpei 1981). We see that, due to the existence of the 
centripetal part, the symmetry of the harmonic oscillator has been reduced. 

5. Remarks 

In the above we have shown that Noether’s theorem provides a systematic way to solve 
the dynamical symmetry problem. In terms of the polynomial symmetry trans- 
formation we can determine all possible allowed potentials and transformations, and 
find out the constants of the motion and the corresponding symmetry algebra, hence 
solving the dynamical symmetry problem. 

If we restrict ourselves to point transformations, the possible isotropic potentials 
which possess symmetry larger than geometrical symmetry are the free particle, the 
harmonic oscillator, the centripetal potential and the mixed potential. When we go one 
step further, allowing the transformation to contain the velocity linearly, the Coulomb 
potential enters the scene. If we increase the power of the transformation polynomial, 
can we find more potentials possessing dynamical symmetry? Or, conversely, can we 
prove a theorem like Bertrand’s theorem in classical mechanics (Greenberg 1966) to 
the effect that the harmonic oscillator and the Coulomb potential are the only systems 
which admit the invariance symmetry larger than S0(3 )?  

This problem can be stated in another way. For the free particle and the oscillator, 
there are fundamental constants of the motion (ai, bi, c l i  and cz i )  from which any 
high-order conserved quantities (including the Hamiltonian) can be constructed. This 
is, in a sense, the converse to the related-integral theorem (Katzin and Levine 1968, 
Katzin 1973). So, essentially, we do not need any polynomial transformations higher 
than point transformations for these systems. In other cases, the known fundamental 
constants of the motion are the Hamiltonian and the angular momentum. So, searching 
for dynamical symmetry is equivalent to seeking the additional constants of the motion 
which are not simply the polynomial combinations of the Hamiltonian and the angular 
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momentum. In the Coulomb potential and the centripetal potential cases we have seen 
such examples of this. Are there other cases? This is an interesting problem, but the 
calculations may be very complicated. 

We have seen how Noether’s theorem is extremely useful for attacking the dynami- 
cal symmetry problem. Beyond the isotropic system, other systems are also studied, 
such as non-stationary systems, damping systems, multi-particle systems, and so on. 
Recently, Noether’s theorem has been used to obtain the constants of the motion for a 
time-dependent oscillator (Lutzky 1978a, b, Ray and Reid 1979, Prince and Eliezer 
1980, Leach 1981). Thus, investigation of these types of systems through the tech- 
niques discussed appears worthwhile. 
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